Algebraic Number Theory Exercise Sheet 9

Prof. Dr. Nikita Geldhauser	Winter Semester 2024-25
PD Dr. Maksim Zhykhovich	23.12.2024

Exercise 1. Let A be a Dedekind ring. Let k be a positive integer. For i = 1, ..., k let \mathcal{P}_i be distinct prime ideals of A, x_i elements of A, and n_i positive integers. Show that there exists an element $x \in A$, such that $v_{\mathcal{P}_i}(x - x_i) \geq n_i$ for every i = 1, ..., k. Hint: Start with the case: $x_1 \in A$ and $x_2 = ... = x_k = 0$. Consider the ideal $\mathcal{P}_1^{n_1} + \mathcal{P}_2^{n_2} ... \mathcal{P}_k^{n_k}$.

Exercise 2. Show that a Dedekind ring with only finitely many prime ideals is a principal ideal domain. *Hint:* Use Exercise 1.

Exercise 3. Let d be a square-free integer. Let $K = \mathbb{Q}(\alpha)$ be a quadratic field, where $\alpha^2 = d$.

(1) Show that \mathcal{O}_K is principal, if d = 2, 5, -11, 7.

(2) Find $C(\mathcal{O}_K)$ for d = -6.

Hint for (1) and (2): Use the inequality from Korollar 9 (Chapter II) and estimate $(\frac{4}{\pi})^{r_2} \frac{n!}{n^n} \sqrt{|d_K|}$ in every case.